
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Breadth First Search Algorithm in Finding Shortest

Flight Route
Breadth First Search Algorithm Application

Kevin Ryan / 13519191

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): kevinryanwijaya@gmail.com

Abstract—This paper is written to describe the example of

breadth first search algorithm (BFS) implementation in solving

daily life problems. The problem tackled in this paper is finding

the shortest flight route between an origin city to a destination

city. This paper is written with the hope of helping readers

understand the integration of algorithms, especially BFS
algorithm, in solving daily life problems.

Keywords—breadth first search, flight, shortest path.

I. INTRODUCTION

The advancement of technology in this modern era has
enabled people to travel vast distances in a short period of time.
Comparing to the way of life then, the means of transportation
nowadays is significantly faster than those in the past. Lots of
days, months, or years even is needed to travel from one place
to another in the past. A travel that took years to complete, now
only takes several days. All this could be achieved due to
public access to transportation technological marvel, air
transportation (mainly planes or helicopters).

Airline companies offer everyone the access to board
planes to travel from one place to another. They provided flight
route available to everyone who wishes to board the plane.
Often there is no direct flight path from one place to another.
To solve this problem, people usually transits in another city to
resume flight to the city of destination. People usually do this
planning manually and may cause inefficiency in planning their
flight route. To solve this problem, the author of this paper
wrote a program to solve this problem by integrating and
implementing breadth first search algorithm to find the shortest
flight path from city of origin to city of destination.

II. THEORIES

A. Breadth First Search

Breadth First Search algorithm or BFS algorithm is a
widening searching algorithm which preorderly visits every
nodes in a graph. This means iterating through every nodes
adjacent to previous nodes, and continues to do so until every
node has been iterated through.

This algorithm utilizes a queue to store every nodes visited
by the algorithm. These nodes are needed as a pivot to visit or
iterate through all the adjacent nodes. Every nodes visited will
be queued only once. This algorithm also uses a boolean table
to store every visited nodes. This is done in order to ensure
non-repetition in node visiting.

In breadth first search algorithm, visited child nodes will be
stored in a queue. This queue is used to reference other
adjacent nodes following the queue order to further reveal how
BFS and its queue is used.

The steps of BFS algorithm :

1. Queue root node

2. Take the node from the head of queue and check if the
queue meets the solution.

3. Returns the result if the node meets the solution.

4. Queue every nodes adjacent to the node (child node) if
the node doesn’t meet the solution.

Figure 1. Visualization of Breadth First Search Represented in
Graph

(https://he-s3.s3.amazonaws.com/media/uploads/fdec3c2.jpg)

B. Flight Route Finding with BFS

Suppose we have the data of every city and all its available
flight route, we could iterate through every nodes (cities)

https://he-s3.s3.amazonaws.com/media/uploads/fdec3c2.jpg

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

preorderly with the help of breadth first search to find the
shortest path from city of origin to city of destination. For
example, suppose we wanted to travel from city of origin A to
city of origin D. City A has a flight route to B and C, and city
C has a flight route to D. We could iterate through every cities
and its flight routes to find the path from city of origin D. The
first step of this process is queueing A and iteration through all
its available flight route. This results in A-B and A-C. Next,
dequeue A from the queue and iterate through every flight
route of the city B (because it’s the last city of the head path of
the queue). This results in nothing because B has no available
flight route. After dequeueing this path, we iterate through
every flight route in the city C. This results in A-C-D. Because
the solution has been met, we stop iterating and return the
result. This result is the shortest path from city of origin A to
city of origin D.

Figure 2. Graph Representation of The Cities

This methods is guaranteed to return the most optimal
results based on flight count. This could happen due to how
BFS iterates preorderly through every nodes. BFS checks
through every possible path starting from the root node and all
its adjacent nodes. However, this program only ensures that
users take the least amount of flight and does not guarantee the
shortest distance of a path.

III. IMPLEMENTATION

This program is written in Python, a high-level
programming language. The way this program works is by
utilizing a class city which has attributes of its name and all of
its flight route stored in a list

classes.py

Class City

class city :

 # Constructor

 def __init__(self, name) :

 self.name = name

 self.routes = []

 def addRoute(self, cityToAdd) :

 self.routes.append(cityToAdd)

 Next, the program will initiate a list read from a txt file
called “input.txt”. The program will parse each line and split
the string read by the char ‘,’. For every cities in input.txt, the

program is going to make a city object of its own and store
every routes in the attribute “routes”. All this are done in a
function called makeListCities which returns a list of objects of
all cities and its flight routes.

functions.py

from classes import *

def makeListCities() :

 listCities = []

 with open("input.txt", 'r') as file :

 for line in file :

 tmpline = line.strip()

 line = tmpline.split(",")

 # Check first item in txt

 existed = False

 for item in listCities :

 if item.name == line[0] :

 existed = True

 if not(existed) :

listCities.append(city(line[0]))

 # Check second item in txt

 existed = False

 for item in listCities :

 if item.name == line[1] :

 existed = True

 if not(existed) :

listCities.append(city(line[1]))

 # Add to route

listCities[getIndexOfCity(listCities,

line[0])].addRoute(listCities[getIndexOfCi

ty(listCities, line[1])])

 return listCities

def getIndexOfCity(listCities, cityName) :

 for item in listCities :

 if item.name == cityName :

 return listCities.index(item)

Now in the main program, after listCities has been initialized,
the program will initialize a new list acting as queue which was
first initialized with class city of origin. The program keeps
track of the iteration index through initializing a variable called
iterationIndex. The program will keeps on increasing the
iterationIndex while the solution is not met and stops if
solution can’t be met. The program is going to add every route

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

to the path in queue at the element iterationIndex and add it to
the queue. This process is done until program has successfully
found the solution or if the city at the end node has no more
routes. All of these are integrated and implemented in main.py

main.py

from classes import *

from functions import *

listCities = makeListCities()

originCity = str(input("Origin city : "))

destinationCity = str(input("Destination

city : "))

originCityClass =

listCities[getIndexOfCity(listCities,

originCity)]

destinationCityClass =

listCities[getIndexOfCity(listCities,

destinationCity)]

bfsPath = [[originCityClass]]

iterationIndex = 0

found = False

while not(found) :

 for item in

bfsPath[iterationIndex][len(bfsPath[itera

tionIndex])-1].routes :

 tmpBfsPath =

bfsPath[iterationIndex].copy()

 tmpBfsPath.append(item)

 bfsPath.append(tmpBfsPath)

 if item == destinationCityClass :

 path = tmpBfsPath

 found = True

 iterationIndex = iterationIndex + 1

for item in path :

 print(item.name, end = " ")

IV. TEST CASES

I. Test Case 1
Suppose you are trying to find a path from city of origin

A to city of destination D given the routes available are as

follow :

The graph of this routes are as follows :

We could see that the path are A-B-C-F-G-H-I-D. We

could check this by using this program. The result of the

program are as follows :

II. Test Case 2

Suppose you are trying to find the flight path from city of

origin Medan to city of destination Bandung given the

routes available are as follow :

The graph of this routes are as follows :

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

From the graph, we could see that there are several routes

from Medan to Bandung. Those are :

1. Medan -> Jakarta -> Bandung

2. Medan -> Palembang -> Semarang -> Bandung
3. Medan -> Palembang -> Singapura -> Jakarta ->

Bandung

The supposed result are the first one, which is the shortest

path from Medan to Bandung. To further confirm the

results, we are going to use the program to help find the

path.

V. SOURCE CODE

https://github.com/kevinryann/flight-route

REFERENCES

[1] Delima Zai, Haeni Budiati, Sunneng Sandino Berutu, Simulasi Rute

Terpendek Lokasi Pariwisata di Nias Dengan Metode Breadth First
Search dan Tabu Search.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 26 April 2021

Kevin Ryan, 13519191

https://github.com/kevinryann/flight-route

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

